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Abstract: Recently, two novel degree based concepts have been defined in graph
theory; E,-degrees and V,.-degrees. Motivated by chemical applications of topolog-
ical indices in the QSPR/QSAR analysis, we define V.-degree re-defined versions
of Zagreb indices (V. — ReZG1(G), V. — ReZG4(G), V. — ReZG3(G)) and V.-
degree of SK indices (V. — SK(G), V. — SK1(G), V. — SK(G)) as parallel to
their corresponding classical degree versions. Further-more, we obtain V,-degree
Ve — ReZG41(Q), Ve — ReZGy(G), Ve — ReZG3(G), Ve — SK(G), V. — SK1(G),
V. — SK3(G) and E,-degree E, — ™ M(G), E, — I(G), E, — F(G) of topological
indices of some standard class of graphs like, path, cycle, complete, star, wheel
and complete bipartite graphs. Also we compute V, — ReZG4(G), V. — ReZG5(G),
Ve — ReZG3(G), V.— SK(G), V. — SK;(G) and V, — SK5(G) topological indices of
some silicate oxygen networks such as dominating oxide network (DOX), regular
triangulate oxide network (RTOX), dominating silicate network (DSL) and derive
analytical formulae of these networks. Additionally, we analyze the numerical and
graphical comparison of the networks.
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E,-degree indices.
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1. Introduction and Preliminaries

Topological indices are used in the process of correlating the chemical structures
with various characteristics such as boiling points and molar heats of formation.
Chemical reaction network theory is a branch of applied mathematics aimed at sim-
ulating the structure-activity relationship in real-world chemical systems. Since its
origin in the nineteenth century, it has grown in popularity among scientists, ow-
ing primarily to advances in organic chemistry and theoretical chemistry. Because
of the computational architecture, it has also gotten a lot of attention from pure
mathematicians. A molecular graph is a simple graph whose vertices correspond
to the atoms and whose edges correspond to the bonds.

Let G = (V, E) be a finite, undirected graph without loops and multiple edges
with V' as vertex set and F as edge set. Let |V| = n and |E| = m. For a graph
G, a vertex v, deg(v) show the number of edges that incident to v. The set of all
vertices which adjacent to v is called the open neighborhood of v and denoted by
N(v). If we add the vertex v to N(v), then we get the closed neighborhood of v,
NJv]. For unexplained graph terminology and notation refer [8, 9].

The concept of re-defined Zagreb (ReZ(@G) indices was recently introduced by
Ranjini et al. is in [11], which are defined as follows.

The first re-defined Zagreb index of a graph G [11], is defined as

deg(u) + deg(v)
deg(u)deg(v)

ReZGi(G) = )

weE(G)

The second re-defined Zagreb index of a graph G [11], is defined as

B deg(u)deg(v)
ReZGy(G) = ) deg(u) + deg(v)’

The third re-defined Zagreb index of a graph G [11], is defined as

ReZG3(G) = Z (deg(u)deg(v))(deg(u) + deg(v)).
weE(G)

The concept of SK-index (SK) was recently introduced by Shigehalli et al. is
in [14], which are defined as follows.
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The SK index of a graph G [14], is defined as
B deg(u) + deg(v)
SK(G)= ) : .
uweE(G)
The SK; index of a graph G [14], is defined as
deg(u)deg(v)
SKi(G) = Z —
weFE(G)
The SK index of a graph G [14], is defined as
deg(u) + deg(v)\?

2
uweE(G)

Recently two novel degree concepts ‘E,-degree’ and ‘V,-degree’ for the vertices
and edges have been defined in Chellali et al [3]. The definition of V,-degree defined
as below.

Definition 1.1. [6] Let G be a connected graph and v € V(G). The V,.-degree
of the verter v, deg,.v, equals the number of different edges that incident to any
vertex from the closed neighbourhood of v.

The E,-degree of an edge is defined as below.

Definition 1.2. [6] Let G be a connected graph and e = uwv € E(G). The E,-
degree of the edge e, dege,e, equals the number of vertices of the union of the closed
neighborhoods of u and v.

The authors [3] have found that the total E,-degree and V.-degree for any
graph are closely related to well-known degree based topological index: the first
Zagreb index. Because of this result and Motivated by the recent results on V-
degree indices [6], we now define V.-degree re-defined versions of Zagreb indices
(V. — ReZG1(G), V. — ReZG5(G), V, — ReZG3(G)) and V,-degree of SK indices
(V.- SK(G), V.—SK;(G), V. — SK5(G)) indices of the molecular graph as follows.

The first V., degree re-defined Zagreb index of a graph G define as

N B d@gve(u) + degve(v)
ReZGY(G) = ug;:@ deguc(u)deg,c(v)

The second V, degree re-defined Zagreb index of a graph G define as

degye (1) degye(v)
Aot — :
ReZ Gy (G) Z degpe(u) + degue(v)
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The third V, degree re-defined Zagreb index of a graph G define as
ReZGy(G) = Z (degye(u)degye(v))(degye(u) + degype(v)).
weE(G)

The V, degree SK index of a graph G define as

SK™(G)= Y. deg@e(u);rdegve(v)‘

weE(G)

The V, degree SK; index of a graph G define as

SKfe(G) _ Z degve (U)degve (U> )

2
weE(G)

The V, degree SK; index of a graph G define as

SK(Q) = ZG) (degve(u) + deg@e(v))%

2

uwveE(

The modified E,-degree Zagreb index of a graph G [10], defined as
1
mMe’U G — .
(@) Z degeys(€)?
e€E(GQ)

The FE,-degree inverse index of a graph G [10], defined as

The E,-degree F-index of a graph G [10], defined as

FUG) = 3 degale)®

e€E(Q)

For more on V,-degree and F,-degree topological indices of molecular graphs
which are in [1-5, 7, 10, 12].

The present paper is organized as follows: In section 2, we obtain V.-degree
and FE,-degree topological indices for some standard class of graphs like path, cycle,
complete, star, wheel and complete bipartite graphs. In section 3,4 and 5, we derive
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Ve-degree indices for the dominating oxide networks (DOX (n)), regular triangulate
oxide networks (RT'OX (n)) and dominating silicate networks (DSL(n)). In section
6, we study the numerical and graphical comparison of DOX (n), RTOX(n) and
DS L(n) networks.

2. V.-degree and F,-degree topological indices for some standard class
of graphs

Proposition 2.1. For path graph P, is

if n=2,3,

if n=4,

”6“ if n>5.

(RN )

1. ReZGv(P,) =

QW

: if n=2,
ve ) 2 if n=23,
2. ReZGY(P,) = 20 ifn=d
\ 70”3’,5146 anz 5.
(2 if n=2,
e ) 32 ifn=3,
I ReZGiE () = 4 1y if n=4,
128n — 412 if n > 5.

ve J1 if n=2,
4. SK (P")_{4n—8 if n>3.
if n=
5. SK{¢(P,) = . ’
! % if n=4,

8n—22 if n>5.

(1 if n=2,

8 ifn=3

6. SK¥(P,) =< : ’
2 o if n=4,

16n —43 if n > 5.
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o |8 if n=2,
9. F <P")_{ 64n — 138 if n > 3.

Proposition 2.2. For cycle graph C,, is

1. ReZGi(C,) = { % ZE " ; Zf

2. ReZGY(C,) = { i ;}i . |
5. Rz @) ={ 1on, el
4o SK(Ca) = { tn imad

5. SKY(Cp) = { ., z‘; . s

6. SKY(C,) = { ?gn ;; Z ; ii

7. MM (C) = { j_G YA,

8. I°(Cy) = { % %Z;i

0. ) ={ fa ns

Proposition 2.3. For complete graph K,, (n > 3) is
1. ReZGi(K,) = 2,

2. ReZGye(K,) = =l

3. ReZGye(K,) = =l

4. SK(K,) = =1t

4 9

5. SKfe(Kn) _ 713(?6—1)37
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6. Sng(Kn> _ n3(n871)3’

7. mMe(K,) = L

8. 1°(K,) = 131,

9. F(K,) = =),

Proposition 2.4. For star graph Ky, (n > 3) is
1. ReZGU(K1,) = 2,

ReZGy(Ky,) =,

ReZG¥ (K, ,) = 2nt,
Kve(Kl n) = 7

W%%N

SKV(Kyn)

Il
tol:

6. SK3e(Ky,)

7. M (K,)

ek
8 I(Ky,) = -2,

9. F*(K1,) =n(n+1)3
Proposition 2.5. For wheel graph W1 ,,, (n > 4) is

1. ReZGY(W,,,) = =t

2n+87

2. ReZGye(W,,,) = mi+3n’+ion,

6n+8

3. ReZGY¥(Wy,,) = 8n* + 560 + 128n? + 128n,

4_ SKUE(Wl,n) — 5n2+12n

2 Y

_ 3n3416n2+16n
5. SKye(Wh,) = SR

3 2
6. SK;e(WLn) _ 13n +5in +80n’

TL2 n 2
M (W) = T
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8. I1°(Wy,) = n++117
9. F®*(W1,,) =n[n®+ (n+1)3].

Proposition 2.6. For complete bipartite graph K, ., (m,n > 2) is
1. ReZGY(Kpn) = 2,

2. ReZG3(Kpy) = -,

3. ReZGge(Km,n) = 2(mn)47

4. SK"(Kpp) = (mn)?,

5. SKY(K,,,) = M
6. SK;’S(Kmm) = (mn)3,

7 ME (Ko ) = s,

8. 1(Kypp) = 20

m—+n’

9. F(Kpnn) = mn(m+n)3.

3. V.-degree indices for Dominating Oxide Networks DOX (n)
In this section, we consider the graph of a dominating oxide network DOX (n),
see Fig. 1.

XX X XX
et

Figure 1: Dominating oxide network DOX (n).

Let G be the graph of DOX (n). The graph dominating oxide network DOX (n)
has 54n? — 54n + 18 edges. Also there are two types of edges in G based on the
degrees of end vertices of each edge as follows:



Analysis of V.-degree and E,-degree Topological Indices ... 167

Ey ={uv € E(Q)|dg(u) = 2,dg(v) = 4}, |Ey| = 24n — 12,
Ey ={uv € E(Q)|dg(u) = dg(v) = 4}, || = 54n? — 78n + 30.

The partition of the edges based on V,-degree of end vertices of dominating
oxide networks is given in Table 1.

Table 1: The V_.-degree of the end vertices of edges for dominating oxide networks
DOX (n).

(degye(u), degye(v)) | (7, 10) (7, 12) (10, 10) | (10, 12) (12, 14) (14, 14)

Number of edges 12n 12n — 12 6 12n — 12 | 24n —24 | 54n? — 114n + 60

Theorem 3.1. The V,-degree first re-defined Zagreb (V. — ReZGy) index of dom-
inating oxide network DOX (n) is

_ Bdn? 1880 | 62
T 35 35
Proof. By using the definition of (V. — ReZ(G,) index and Table 1, we obtain

ReZGv(DOX (n))

degye(u) + degye(v)
degye(u)degye (v)

ReZGY(DOX(n)) = Y

weE(G)

7410 7412 10+ 10
- 12 120 —12( L=
”(7><10>jL " (7><12)+6(10><10)
10+ 1 12 4 14
+ 12n—12< 0+ 2>+24n—24( 2+ )

10 x 12 12 x 14
14+14>

54n? — 114n + 60
oo n (14><14

After some simplification, we get the desired result.

Theorem 3.2. The V,-degree second re-defined Zagreb (V. — ReZ(Gy) index of
dominating oxide network DOX (n) is

Fo 2798 | — 2 2 145

720 2016 840 1008 720 2016 1008
ZG5(DOX (n)) = 378n°+ | ——+——
ReZ Gy (DOX(n)) = 378n +<11+13 17 19 > 11 13 19

Theorem 3.3. The V,-degree third re-defined Zagreb (V, — ReZG3) index of dom-
inating oxide network DOX (n) is

ReZGY(DOX (n)) = 296352n° — 455688n + 185616.
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Theorem 3.4. The V,-degree (V, — SK) index of dominating oxide network
DOX (n) is

SK"(DOX (n)) = 756n* — 936n + 342.

Theorem 3.5. The V,.-degree (V. — SK7) index of dominating ozide network
DOX (n) is

SK¢(DOX (n)) = 5292n* — 7512n + 2940.

Theorem 3.6. The V,.-degree (V. — SK3) index of dominating oxide network
DOX(n) is

SK3*(DOX(n)) = 10584n? — 14886n + 5769.

4. V.-degree indices for Regular Triangulate Oxide Networks RTOX (n)

In this section, we consider a family of regular triangular oxide networks which
is denoted by RTOX (n),n > 3. The graph RTOX(5), is shown in Fig. 2.

Figure 2: Regular triangular oxide network, RTOX (5).

Let G be the graph of RTOX (n). The graph regular triangular oxide network
RTOX (n) has 3n? + 6n edges. Also there are three types of edges in G based on
the degrees of end vertices of each edge as follows:

E; ={uv € E(Q)|dg(u) = dg(v) = 2}, |Ey| = 2,
Ey ={uv € E(Q)|dg(u) = 2,dg(v) = 4}, |Es| = 6n,
Es; ={uv € E(G)|dg(u) = dg(v) = 4}, |E3| = 3n? — 2.

The partition of the edges based on V,-degree of end vertices of regular triangular
oxide network is given in Table 2.
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Table 2: The V,-degree of the end vertices of edges for regular triangular oxide

network RTOX (n).

(degpe(u), degye(v))\uv € E(G) | Number of edges

(5,5) 2

(5,10) 4

(7,10) 4

(7,12) 6n — 8

(10, 10) 1

(10,12) 6

(12,12) 6n —9

(12, 14) 6n — 12

(14, 14) 3n? — 12n + 12

Theorem 4.1. The V,-degree first re-defined Zagreb (V, — ReZG1) index of reqular
triangular ozide networks RTOX (n) is

48n S5n 1 11 12 34 77

_:, +—+—+
7 21 7 2 10 7T 35 21
Proof. By using the definition of (V, — ReZG) index and Table 2, we obtain

Z degue(u) + degye(v)
weB(E) degye(u)degye (v)

(55, (510N (7410
 T\Bh x5 5x 10 7x 10
7412 10 + 10 10 4 12
- 1
oom 8(7x12)Jr (10x10)+6(10><12>

Cenof1212) 12414
" 12 x 12 " 12 x 14

14414
14 x 14

ReZGY*(RTOX (n))

ReZGU(RTOX (n)) =

+ 3n2—12n+12<

After some simplification, we get the desired result.

Theorem 4.2. The V,.-degree second re-defined Zagreb (V. — ReZGs) index of
regular triangular oxide networks RTOX (n) is

360 1008

280 672
+ o — == 0.

504 504 40
11 13 17 19

ZGY(RTOX =2In’+ (" +°" 14 —
ReZG5°(RTOX (n)) n+<13+19 8n+3+
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Theorem 4.3. The V,-degree third re-defined Zagreb (V,— ReZG3) index of reqular
triangular ozide networks RTOX (n) is

ReZGY(RTOX (n)) = 16464n* — 9336n — 4332.

Theorem 4.4. The V,-degree (V. — SK) index of reqular triangular ozide networks
RTOX(n) is
SK"(RTOX (n)) = 42n* + 39n — 22.

Theorem 4.5. The V,-degree (V.—SK,) index of reqular triangular oxide networks
RTOX (n) is
SK(RTOX(n)) = 294n® + 12n — 160.5.

Theorem 4.6. The V,-degree (V,—SKs) index of reqular triangular oxide networks
RTOX (n) is

SK*(RTOX (n)) = 588n* + 67.5n — 304.
5. V.-degree indices for dominating silicate network DSL(n)

In this section, we consider dominating silicate network DSL(n). The molecular
structure of DSL(2) is shown in Fig. 3.

Figure 3: Dominating silicate network DSL(2).

Let G be the dominating silicate network DSL(n). The graph dominating
silicate network DSL(n) has 45n% — 39n + 12 vertices and 108n? — 108n + 36 edges.
Also there are four types of edges in G based on the degrees of end vertices of each
edge as follows:

E, = {w € E(G)|dg(u) = 2,dg(v) = 3}, |Ey| = 12n — 6,

Ey ={uv € E(GQ)|dg(u) = 2,dg(v) = 6}, |Es| = 24n — 12,

Es ={uv € E(GQ)|dg(u) = 3,dg(v) =6}, |E5| = 54n? — 66n + 24,
Ey={uv € E(G)|dg(u) = dg(v) = 6}, |E3| = 54n? — 78n + 30.
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Table 3: The V,_-degree of the end vertices of edges for dominating silicate network
DSL(n).

(degpe(u), degye(v))\uv € E(G) | Number of edges
(12,13) 12n— 6
(13, 20) 12n
(12,20) 12n
(12,23) 24n — 24
(15,23) 12 — 12
(15, 26) 54n? — 102n + 48
(20, 20) 6
(20,23) 12n — 2
(23,26) 24n — 24
(26,26) 54n? — 114n + 60

The partition of the edges based on V_-degree of end vertices of dominating
silicate network DSL(n) is given in Table 3.

Theorem 5.1. The V. -degree first re-defined Zagreb (V. — ReZG) index of dom-
inating silicate networks DSL(n) is

. 639n2 (24 89 70 598 281 588\ 3 60 70 25
ReZGy(DSL(n) = (15 13723 65 +1_15+@>n

65 5713723 2%

Proof. By using the definition of (V. — ReZG) index and Table 2, we obtain

ReZGY(DSL(n)) = Y digilgf:él)tlj;iﬁ;)

12+ 13 13 + 20 12 4 20
— 12n- 12 12
" 6(12><13>Jr ”(13><20)jL ”(12x20)

12 4+ 23 15 + 23
924 — 24 120 — 12
+osn (12><23)Jr " (15><23)

15 + 26 20 + 20
54n% —102n + 48 ———~ | +6( ——
oo n (15><26)+ (20><20>
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20+ 23 23+ 26
+ 12n—2( i )+24n—24( i )

20 x 23 23 x 26
26 + 26
26 x 26

+ 54n® — 114n + 60(

After some simplification, we get the desired result.

Theorem 5.2. The V,-degree second re-defined Zagreb (V. — ReZ(Gsy) index of
dominating silicate networks DSL(n) is

ReZGY(DSL(n))

_ 49842n2+ 1040+2070+1872+6624_39780+5520+14352
41 11 19 25 35 41 43 49

—1392) n

2070 936 6624 n 18720 920 14352 4 840
19 25 35 41 43 49 '

Theorem 5.3. The V,-degree third re-defined Zagreb (V. — ReZG3) index of dom-
inating silicate networks DSL(n) is

ReZGY(DSL(n)) = 27616680 — 4066620n + 1817272.

Theorem 5.4. The V,-degree (V, — SK) index of dominating silicate networks
DSL(n) is
SK"(DSL(n)) = 2511n2 — 3021n + 1310.

Theorem 5.5. The V,.-degree (V. — SK;) index of dominating silicate networks
DSL(n) is
SK(DSL(n)) = 28782n* — 39168n + 17354.

Theorem 5.6. The V. -degree (V, — SKs) index of dominating silicate networks
DSL(n) is
SK¥(DSL(n)) = 59197.5n% 4+ 80080.5n + 35182.

6. Numerical and Graphical Comparison

In the numerical comparison of V_-degree topological indices first, second and
third re-defined Zagreb indices and SK index, SK; index and SK, index for
DOX(n), RTOX(n) and DSL(n), we computed these indices for different val-
ues of n. It can be observed that when value of n increases, indices values are
also increased as shown in Table 4, 5 and 6. The graphical representation of these
topological indices are illustrated in Fig. 4, 5 and 6 for the different values of n.
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Table 4: Numerical comparison of ReZGY¢, ReZG5¢, ReZGY5, SK, SK{° and
SKY¢ indices of DOX (n).

ReZGY° ReZG4¢ ReZGg¢ SKv  SKY¢ SK3°
4.1142 1029.4209 26280 162 720 1467
21.8854  2638.4258 459648 1494 9084 18333
55.085 5003.4307 1485720 4338 28032 56367
103.713  8124.4356 3104496 8694 57564 115569
167.7694 12001.4405 5315976 14562 97680 195939
247.2542 16634.4454 8120160 21942 148380 297477
342.1674  22023.4503 11517048 30834 209664 420183
452.509  28168.4552 15506640 41238 281532 564057
578.279  35069.4601 20088936 53154 363984 729099
719.4774  42726.465 25263936 66582 457020 915309

S 0000 otk w3

Figure 4: Graphical comparison of ReZGY¢, ReZGY¢, SK"¢, SK{¢, SKJ° and
ReZGe.

Table 5: Numerical comparison of ReZGY¢, ReZGY¢, ReZGY5, SK, SK{° and
SK3¢ indices of RTOX (n).

ReZGY* ReZG3® ReZGye SK' SKy¢  SKi°
1619 486713 21468 59 1455 3515
4476 1289668 80196 224  1039.5 2183
819  251.2623 171852 473 25215  5190.5
12.761 4155578 296436 806 45915 9374
18.189  621.8533 453948 1223 72495 147335
24474  870.1488 644388 1724 104955 21269
31.616  1160.4443 867756 2309 14329.5 28980.5
39.615  1492.7398 1124052 2978 18751.5 37868
48.471  1867.0353 1413276 3731 23761.5 479315
58.184  2283.3308 1735428 4568 29359.5 59171

S5 ©0o ootk w3
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e

Figure 5: Graphical comparison of ReZGY*

ReZG5°.

Table 6: Numerical comparison of ReZGY¢,
S K3 indices of DSL(n).

, ReZGYe, SKv, SKve, SK¥ and

ReZGY, ReZGYe, SK, SK' and

n ReZGY  ReZGY  ReZGy  SK®  SKY®  SKi°
1 56193 388.962 512320 800 6968 174460

2 281186  2562.5933 4730704 5312 54146 432133

3 70.2793  T167.5416 14472424 14846 158888 808201

4 1321014 14203.8069 29737480 29402 321194 1302664
5 213.5849 23671.3892 50525872 48980 541064 1915522
6 314.7298 35570.2885 76837600 73580 818498 2646775
7 4355361  49900.5048 108672664 103202 1153496 3496423
8 576.0038 66662.0381 146031064 137846 1546058 4464466
9 736.1329 85854.8884 188912800 177512 1996184 5550904
10 915.9234 107479.0557 237317872 222200 2503874 6755737

Figure 6: Graphical comparison of ReZGY¢, ReZGy¢, SK"¢, SK7{¢, SKJ° and

ReZG5°.
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4. Conclusion

In this study, we define V.-degree re-defined versions of Zagreb indices (V, —
ReZG(G), V. — ReZGy(G), V. — ReZG5(G)) and V,-degree of SK indices (V, —
SK(G), V. — SK1(G), V. — SK5(G)). Also we investigated V,-degree topological
indices of some silicate oxygen networks such as dominating oxide network (DOX),
regular triangulate oxide network (RTOX), dominating silicate network (DSL) and
derive analytical formulae of these networks. Also we have obtained V,-degree and
E,-degree topological indices of some standard class of graphs. One can obtain the
V.-degree and FE,-degree topological indices of some chemical graphs.
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